
RESEARCH PAPER

Differential gene expression and gene-set enrichment analysis in Caco-2
monolayers during a 30-day timeline with Dexamethasone exposure

A data modeling approach to understanding culture age as co-variate for differential
expression in a non-renewing epithelial monolayer using a gene ontology-defined 250-plex
Nanostring probe panel.
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ABSTRACT
Glucocorticoid hormones affect gene expression via activation of glucocorticoid receptor NR3C1,
causing modulation of inflammation and autoimmune activation. The glucocorticoid Dexamethasone
is an important pharmaceutical for the treatment of colitis and other inflammatory bowel diseases.
While suppressive effects of glucocorticoids on activated immune cells is significant, their effects upon
epithelial cells are less well studied. Previous research shows that the effects of Dexamethasone
treatment on polarized Caco-2 cell layer permeability is delayed for >10 treatment days (as measured
by transepithelial electrical resistance). In vivo intestinal epithelial cells turn over every 3–5 days; we
therefore hypothesized that culture age may produce marked effects on gene expression, potentially
acting as a confounding variable. To investigate this issue, we cultured polarized Caco-2 monolayers
during a 30-day timecourse with ~15 days of continuous Dexamethasone exposure. We collected
samples during the timecourse and tested differential expression using a 250-plex gene expression
panel and Nanostring nCounter® system. Our custom panel was selectively enriched for KEGG annota-
tions for tight-junction, actin cytoskeleton regulation, and colorectal cancer-associated genes, allowing
for focused gene ontology-based pathway enrichment analyses. To test for confounding effects of time
and Dexamethasone variables, we used the Nanostring nSolver differential expression data model
which includes a mixturenegative binomial modelwith optimization. We identified a time-associated
“EMT-like” signature with differential expression seen in important actomyosin cytoskeleton, tight
junction, integrin, and cell cycle pathway genes. Dexamethasone treatment resulted in a subtle yet
significant counter-signal showing suppression of actomyosin genes and differential expression of
various growth factor receptors.
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Introduction

Glucocorticoids (GCs) modulate stress response in
tissues throughout the body, including gastroin-
testinal barrier function associated with intestinal
and colorectal inflammation.1 Immunosuppressive
effects of GCs make them important pharmacolo-
gical agents for chronic disorders including
inflammatory bowel disease.2,3 Long-term negative
side effects of GCs, including endogenous Cortisol
in Cushing’s Syndrome, are associated with loss of
epithelial integrity.4 Epithelial barrier function is
the result of protein–protein interactions between
the tight-junction (TJ) complex, actin cytoskele-
ton, and Rho GTPase signaling pathways.5,6 The

molecular structure of TJ includes the trans-
membrane protein Occludin (OCLN) which pre-
vents paracellular translocation of macromole-
cules, and Claudin family members which
provide selective permeability for small ionic
molecules.7 Important intracellular tight-junction
regulatory proteins of the TJ complex include ZO-
1 (aka. TJP), TJP2, and TJP3 which act as the
structural hub between transmembrane TJ pro-
teins and filaments of the actin cytoskeleton. The
TJ and its regulatory milieu are described as the
‘zonular signalsome’ due to crosstalk between TJ,
adherens junction (AJ), and RhoGTPase
signaling.7–11 (Figure 1a)
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The Caco-2 cell line has a decades-long history of
use as in vitro model for pharmacokinetic assays for
drug absorption.12 Recent papers use the Caco-2 cell
line for investigating regulatory mechanisms of

protein and mRNA expression of TJ genes during
stimulation with inflammatory cytokines and/or
treatment with GCs.13–16 Two reports specifically
investigated GC regulatory effects during long-term

Figure 1. Epithelial identity pathways and experimental design. (a) Tight junction and signal transduction pathways regulating
epithelial permeability. (b) Permeable membrane culture system and TEER electrical diagram. (c) Experimental timeline.
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timecourse on epithelial polarization experiments
(>20 days).17,18 These papers showed significant GC-
associated effects occurring only at later stages of the
timecourse and indicate that GCsmay have important
biological effects in this system only after weeks of
Dexamethasone (DEX) exposure. Caco-2 polariza-
tion, which occurs earlier in culture (days 1–10), is
also associated with significant differential expression
(DE) of TJ proteins in reported microarray data.19–21

We sought to further investigate gene expression
and pathway effects associatedwith this phenomenon,
and asked the following questions: 1)During a 30-day
timecourse in untreated Caco-2 monolayers, what DE
and pathway-associated trends are observed? 2)
During a 20-day DEX treatment, what are the relative
DEX-associated vs. timeline-associated DE and asso-
ciated pathway signals? 3) Is signal present from pre-
viously reported gut stress/IBS biomarkers? To
address these questions, we utilized a 250-plex gene
expression assay, and tested RNA collected from
Caco-2 polarized monolayers grown on apico-
basolateral membrane system, and collected trans-
epithelial resistance (TEER) measurements as
a readout for permeability during the timecourse
(Figure 1b). We grew cells for 30 days, with DEX
treatment between days 15–30 (15 days) (Figure 1c).
The results are partially confirmatory of previous
research, while pathway analysis provides novel infer-
ences of higher-order functional effects associated
with culture age and DEX treatment, with good sta-
tistical support for observed pathway enrichments.
The advanced linear modeling strategy provides
a novel indications of relative effects from the respec-
tive variables.

Materials and methods

Introduction to the workflow

Our expression assay methodology was implemented
as a demonstration as scale-multiplier for a small-
laboratory, medium-throughput gene expression
workflow. Expression data were obtained with an in-
house Nanostring nCounter® system and nSolver™
software, and represents a partially automated, med-
ium-throughput gene expression platform with inte-
grated bioinformatics for DE and gene ontology
(GO)-based pathway analyses. The custom probe

panel and workflow with pathway scoring and GO
enrichment analysis provide novel insights into puta-
tive cellular functional effects a set of in vitro cell
culture experiments. All raw Nanostring .RCC files
are available in the NCBI Gene Expression Omnibus
database (GEO accession: GSE132501). Additional
metadata on cell cultures and treatments are found
in NCBI Bioproject database and its linked biosam-
ples (BioProject accession: PRJNA525237).

Caco-2 cell culture

Caco-2 cell line was purchased from American Type
Culture Collection (ATCC# HTB-37), and culturing
was performed as described in published best prac-
tices from the ATCC manual (https://www.atcc.org/
Products/All/HTB-37.aspx?geo_country=us), and as
reported in literature.12,22 Cryovials were thawed and
cultured in 12 mL media in T75 flasks. Cells were
grown to 60–80% confluency, media was aspirated,
rinsed with HBSS, harvested with 3 mL .25%
Trypsin-EDTA and split 1–2 or 1–3. Viable cell
counts were obtained using Nexcelom Bioscience
Cellomenter™ Auto T4 cell counter with Trypan
Blue assay for viability (BioWhittaker® catalog# 17-
942E). Cells were initially thawed from cryopre-
served vials with 5 or 6 previous passages and seeded
after 3–4 additional passages.

After expansion, cells were seeded onto 24-well
insert plates with PET 1.0 uM pore size permeable
membrane (Millipore product # PSRP010). Cells were
seeded at a density of .4x106 cells/mL in a 300uL
volume (120,000 cells/well) in the apical chamber.
Cultures were grown at 37°C, 5% CO2 on filter-
sterilized Eagle’s Minimum Essential Medium
(EMEM) with 20% Fetal Bovine Serum, with
Penicillin-Streptomycin (Quality Biological™ cat. #
120–095-671). Media was changed every other day
during the timecourse.

Trans-Epithelial Electrical Resistance (TEER)

TEER readings were taken at regular intervals dur-
ing the DEX timecourse with the Millicell ERS-2
Epithelial Volt-Ohm Meter (cat. # MERS00002).
Cultures were equilibrated at room temperature
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(22°C) before readings were taken, to control for
temperature effects on TEER readings.23

Timecourse and DEX treatment

Dexamethasone treatment began ~15 days post-
seeding, after Caco-2 monolayers became polar-
ized and cell density remained stable for 2–3
days (figure 1c). DEX was applied to experimental
wells at 10uM, with one set of replicates treated at
100uM. Sigma reagent #D2915 “Dexamethasone-
Water Soluble” was used. Water-soluble DEX is
compounded with methyl-β-cyclodextrin, product
documentation states the dry reagent is 65mg/g
DEX by weight. DEX reagent was labeled 392.5g/
mol. A stock solution was made by dissolving DEX
at 10 g/L. 10-uM Dex in media was obtained by
using: 65 mg/g x 10g/L = .65g/L x 1mol/392.5g =
.00166mol/L = 1.66 mM = 1660 uM. For 10uM,
added .06mL Dexamethasone-Water Soluble stock
to 10 mL media. Control cell cultures were grown
in standard media without DEX or carrier. As
DEX is commonly orally administered in conju-
gated form, the experimental treatment can be
interpreted as a model for cellular action during

pharmacokinetic exposure of conjugated DEX
per se, rather than generalized to glucocorticoid
activity in general. Total RNA was collected from
fresh monolayers at multiple timepoints during
the full 30-day timecourse and the 15-day DEX
treatment; these were analyzed as separate experi-
ments (Figure 2a, Figure 3c, respectively).

Experimental replicates

We collected RNA samples for 2–4 replicates per
plate, and from 2 to 3 biological replicates for
selected timepoints.

RNA extraction

Total RNA including small RNA from Caco-2 mono-
layers was extracted from individual permeable mem-
brane inserts at the three experimental timepoints
using the Qiagen miRNeasy® Micro kit (cat.
#217,084) with RNeasy® MinElute® spin columns
(cat. #1,026,497). Extracted total RNA was quantified
with Thermo Scientific™ NanoDrop™ spectrophot-
ometer. RNA was stored at −80°C and thawed imme-
diately before the Nanostring protocol start.

Figure 2. Days 1 – Day 30 Caco-2 Timecourse, Cellular Aging Experiment. (a) Histogram of sample numbers by timepoint. (b)
Heatmap of pathway scores, using ReactomeDB pathway annotations. (c) Volcano plots showing differentially expressed genes by
pathway annotation for significant pathways identified in gene-set analysis.

e1651597-4 J. M. ROBINSON ET AL.



Figure 2. (Continued).
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Figure 2. (Continued).
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Nanostring methodology and probe-panel
selection

Nanostringmethodology utilizes fluorescent barcode-
labeled hybridization probes, does not use reverse-
transcription but is a single molecule optical counting
method which provides some technical advantages
over both RNA-seq and qPCR methods.21

Our 250-plex probe panel targeted 250 protein
coding mRNAs. Complete probe sequences and iso-
form coverage for the panel are provided with the
supplementary material (Sup. Methods 1.1; GEO
Platform GPL26764). Briefly, our panel selection uti-
lized KEGG pathway database to generate a list of
genes affecting intestinal-epithelial barrier function
and epithelial homeostasis, is also described in terms
of a network interaction model for miRNA–mRNA

interactions.24 Genes were selected from KEGG
Pathways for tight-junction (map04530), regulation
of actin cytoskeleton (map04810), colorectal cancer
(map05210), most with significant overlapping mem-
bership in adherens junction (map04520), focal adhe-
sion (map04510), Wnt (map04310), and other
pathways.25 Genes from the initial list were excluded
if not expressed in lower GI tissues by referencing
against the Human Protein Expression Atlas (which
includes tissue-specific RNA expression).26

Additional genes of interest were included on an ad
hoc basis:

(1) KEGGmicroRNA gene targets associated with
colorectal cancer (map05206). These include
Programmed cell death 4 (PDCD4), DNA
methyltransferase 3A (DNMT3A), and others.

Figure 3. Dexamethasone vs. Controls Timecourse. (a) Confocal image of a representative Caco-2 polarized monolayer at ~10 days
with immunofluorescent staining for Occludin (OCLN) and ZO-1 (TJP). (b) TEER (ohms/cm2) for DEX and Control samples during the
timecourse. (c) Sample distributions used in DEX vs Control analysis by days post-seeding. (d) Unsupervised clustering of relative
gene expression in the full probe panel. (e) PCA results showing PC1 is reasonable predictor for timecourse, PC3 is a marginally
effective predictor for DEX treatment.
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(2) Core microRNA biogenesis pathway genes
Drosha (RNASEN), Pasha (DGCR8), Dicer,
Argonaute2, Exportin5, and the RISC load-
ing complex RNA binding subunit (TRBP).

(3) Putative reported biomarkers for GI
dysfunction27 including chemokine receptor
CXCR4, Lysozyme (LYZ) and others.

(4) Histological enterocyte differentiation mar-
kers Carbonic Anhydrase I and II (CAI,
CA2), 28 and cancer stem marker Aldehyde
dehydrogenase 18, isoform A1.28,29

(5) Additional genes with high specific expression
in gastrointestinal tissue according to Human
Protein Expression Atlas, including additional
Claudins, heat shock proteins, and others.

Normalization and differential expression

Normalization, DE, and pathway analyses were per-
formed with Nanostring nCounter nSolver™ 4.0
(Nanostring MAN-C0019-08), with Nanostring
Advanced Analysis Module 2.0 plugin (Nanostring
MAN-10,030–03) following the Nanostring Gene
Expression Data Analysis Guidelines (Nanostring
MAN-C0011-04). Advanced Analysis Module 2.0
software uses open-source R programs for QC, nor-
malization, DE analysis, pathway scoring, and gene-
set enrichment analysis.

Reference genes for DE were obtained from the
nSolver implementation of geNorm algorithm,
which selects reference probes based on global sta-
bility (Mi) of pairwise expression ratio between sam-
ples, iteratively identifying genes with the least
expression variance30 from the R-language
Bioconductor package NormqPCR.31 We chose 10
most minimum Mi value genes for normalization
reference genes (Sup. Methods 1). Normalized
probe count data for each experiment are provided
(Sup. Results 1.1, Normalized Counts). Normalized
counts provided as supplementary data with this
submission were analyzed as described in this meth-
ods section. Note that normalized count data
reported in the GEO: GSE132501 accession utilized
a global average normalization method which
includes a broader sample set than the current ana-
lysis, therefore normalized counts vary between this
and the GEO normalized data, although results were
tested and remain similar.

The nSolver 4.0 DE data model preferentially
applies the optimal statistical method per gene
given the variable distribution 1) Mixture negative
binomial model, 2) Simplified negative binomial
model, 3) Log-linear model, in that order. FDR
p-value adjustment was performed with
Benjamini–Yekutieli method. Under the data
model, time (day post-seeding) was used as
a continuous variable for to testing DE during
the Day 1 – Day 30 timecourse. As predictor vari-
ables for the Day 15 –Day 30 DEX treatment experi-
ment, time (day post-seeding) as a continuous
variable, and Control/DEX+/DEX100 were used as
categorical variables with Control as the reference
category (Sup. Results 1.2, 1.3, 1.4). Analyses were
tested with batch and cartridge IDs factored as con-
founding variables and were observed to exert
a minimal effect on the DE determinations.

Pathway scoring and gene-set analyses

Pathway scoring and gene-analysis were performed
using the Reactome pathway database annotations.32

Pathway scores are derived by calculating the first
principle component of pathway genes’ normalized
expression (Sup. Results 2.1, 2.2, Pathway scoring
results for experimental comparisons). Gene set ana-
lysis is a quantitative summary of DE for gene sets.
GSA summarizes the DE for genes from each anno-
tation, then calculates a global differential signifi-
cance score for each gene set, allowing for some
quantitative inference of putative functional effects
(Sup. Results 3, GSA global statistics). KEGG path-
ways were performed with Pathview33 implemented
in Nanostring nSolver.

Results and discussion

Our results are divided into three parts with
accompanying discussions: A) 30-day timecourse,
B) Effects of DEX treatment on DE and TEER
measures, and C) ad hoc biomarkers. Compared
with the pre-print, these results represent
increased sampling and application of pathway
scoring and gene set enrichment analyses; results
remained very similar to with the previous
analyses.34
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Differential expression associated with 30-day
timecourse

A 30-day timecourse is generally lengthier than most
traditional in vitro cell culture experiments. It repre-
sents a continuum of biological processes which
include epithelial polarization (~D1-10), and cellular
senescence (after polarization and at later timepoints).
We observed an ‘inflection point’ in pathway scores
clustering at around culture Day 10 (Figure 2b). Key
epithelial pathways are altered at this point, and are
consistent with the previously published data of
Halbeib et al. (2007) in their microarray study of
Caco-2 polarization.20 Similar expression patterns
for key pathway transcripts include increased expres-
sion of Claudins 4 and 15, decreased expression of
Occludin (OCLN), Beta Catenin 1 (CTNNB1),
Fibronectin 1 (FN1), and Cyclin-dependent kinase 4
(CDK4).

Gene set enrichment analysis indicates putative
altered cellular functions; these are representative
gene expression associated with biological processes
of polarization and senescence (Fig. 2c, 3b,
Supplementary Results). Increased expression of
Claudins 3, 4, 7, and 15 (CLDN3, 4, 7, 15) are
observed from the ‘Tight junction interactions’
pathway. Decreased expression is seen in Beta-
Catenin 1 (CTNNB1) and ZO-1 (TJP), Rho
GTPase ROCK1, and others from the ‘Apoptotic
cleavage of cellular proteins’ pathway. Decreased
expression is also seen in ‘Cyclin-D associated events
in G1ʹ pathway including Cyclin D1 and D2
(CCND1, 2) and Cyclin-dependent kinase 4
(CDK4). Actin cytoskeleton genes Actin B (ACTB)
and Actinin (ACTN1) have lowered expression, with
actomyosin assembly showing variable expression,
putatively associated with reorganization of the api-
cal band cytoskeletal structure in epithelia. Also seen
is decreased expression in the miRNA biogenesis
components Drosha and Exportin 5 (XPO5).

In general summary of the timeline results,
increased expression of Claudins, and decreased
expression of Cyclin D-associated cell cycle tran-
scripts, AJ and TJP expression are indicative of
putative increased functional activation of tight-
junction and diminished activation of Cyclin
D-mediated G1, ‘zonular signalsome’, and
miRNA biogenesis hubs. Further studies should

investigate how similar these observed patterns
are to in vivo enterocyte differentiation, while the
inherent capability for the longevity of Caco-2 vs.
primary enterocytesprovides insight into mechan-
isms of survival for CRC cells.

Differential expression associated with
Dexamethasone, with General Linear Modeling
(GLM) of covariate timecourse effects

Dex-associated alterations in TEER are observed
late in the timecourse
During the DEX treatment, we observed TEER
values increase at a steady rate in both Control
and DEX treated replicates. Decreasing permeabil-
ity associated with increased barrier function is
expected during maturation of Caco-2 monolayers
(Figure 3a).

Between culture days 23–25 (~days 13–15 of DEX
continuous exposure), DEX-treated cultures diverged
to have higher TEER relative to control cultures
(Figure 3b), also consistent with the previously
reported observations of Fischer et al. (2014) and
Zheng et al. (2017).17,18 At these latest timepoints,
TEER in DEX-treated and control cultures becomes
significantly different: DEX-treated cultures continue
to show increasing TEER, while controls level off.
Physiological effects of GC exposure using this system
are therefore not measurable until significantly after
polarization, even if a distinct gene expression signa-
ture can be detected. The phenomenon could repre-
sent the accumulation of transcriptional alterations
which over time become functional, or another
mechanism by which DEX effects on permeability
are delayed in the short term, but manifest during
long-term exposure.

Covariate GLM modeling resolved DEX-associated
DE from culture age-associated DE
Heirarchical clustering of panel-wide gene
expression in DEX-treated samples show cluster-
ing most strongly at later timepoints, while at
earlier timepoints DEX and Control samples
form mixed clusters (Figure 4b). Differential
pathway ratios between experimental compari-
sons showDEX vs. Control and Timecourse vari-
ables each have pathway enrichment ratios
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unique to their respective variables (Figure 4c)
(Figure 3(d–e), Figure 4(a)).

Specific pathways affected include actomyosin
stress-fiber assembly and contraction components of
the ‘Rho GTPases Activate ROCKs pathway, where
transcripts show decreased expression of Myosin 10
(MYH10), regulatory Myosin Light-chain Regulatory
Peptide 9 (MYL9), negative regulator of actin stabili-
zation LIM-Domain Kinase 2 (LIMK2), and Calcium/
Calmodulin-Dependent Serine/Threonine Kinase
(CASK, associated with membrane trafficking and
centrosome formation) (Figure 5a,c). This decreased
expression may represent inhibition of stress-fiber
formation and disassembly of the cortical actin cytos-
keleton by DEX, resulting in suppression of EMT or
‘partial EMT’ progression.35

As observed in the full 30-day timecourse,
the 15–30-day time variable shows decreased
Occludin (OCLN) and increased ZO-1 (TJP)
expression, however effects on the tight junction-
associated with DEX treatment are insignificant
(Figure 5b,d). Upstream of the tight-junction
pathway, however, significant DE is seen in
receptor tyrosine kinases with increased integrins,
epithelial growth factor receptor (EGFR) and
hepatocyte growth factor receptor (MET) receptor

expression, and decreased fibroblast and plasma-
derived growth factor receptors (EGFR, PDGFR)
(Figure 6a).

Ad hoc gene expression biomarker profiles

Differentiation markers
Histological marker for enterocyte differentiation
Carbonic Anhydrase 2 (CA2) decreased with time,
while colorectal cancer stem marker Aldehyde
Dehydrogenase 18A1 (ALDH18A1) increased,
indicative of loss of differentiation and increased
‘stemness’ over time.

Putative biomarkers of GI pain and inflammation
Lysozyme (LYZ) is a biomarker for GI inflamma-
tion, 36 associated with mucous/sodium flux and
microbial dysbiosis during stress response. Here
LYZ shows showing significantly lowered expres-
sion in our DEX-treated cultures (Figure 4a),
which in vivo may represent diminished respon-
siveness to microbiome dynamics. CXCR4 is asso-
ciated with leukocyte trans-endothelial migration
associated cell surface receptor, also previously
identified as a putative IBS-associated biomarker.27

Figure 4. Dexamethasone vs. Controls Timecourse. (a) Volcano plots for covariates under our GLM-based modeling strategy. (b)
Clustering of raw pathway scores. (c) Clustering of differential pathway scores for each experimental comparison.
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Figure 4. (Continued).
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Dex-associated c-Jun expression
DEX-associated increase in expression of the pro-
survival transcription factor c-JUN (Figure 4a) is
interesting in light of previous reports that GCR/
AP-1 promotor binding suppresses JUN
transcription.37 While the observation might result
from adenocarcinoma-specific alterations present in
the Caco-2 cell line, DEX-associated, Ras-dependent
stimulation of c-Jun expression in the rat intestinal
epithelial cell line IEC-6 was also reported by
Boudreau et al. (1999).38 This provides some indica-
tion that DEX-associated c-Jun activation is poten-
tially a general rather than a specific Caco-2 response.

Dexamethasone carrier may contribute significant
effects
Dexamethasone is not water-soluble, so is often com-
pounded with a carrier such as a Cyclodextrin mole-
cule which increases the solubility (and bio-

availability), of Dexamethasone,39,40 therefore our
data should be interpreted as the result of
Dexamethasone-Cyclodextrin complex. Beig et al.
(2013) and Fine-Shamier et al. (2017) have reported
cyclodextrin-based formulations to result in decreased
permeability, or pericellular transport, although DEX
should remain bioavailable to the epithelial
monolayer.41,42 Such carrier effects are an important
consideration in pharmacological design and delivery
of water-insoluble molecules such as steroid mole-
cules, and understanding the results of Cyclodextrin:
Dexamethasone complexes on tissue models isa sig-
nificant component of GC pharmacokinetics.43

Conclusion

Transcriptomics projects often face noisy data, for
which relevant functional signal may be subtle. One
common strategy for mitigating noisy signal has

Figure 4. (Continued).
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been to focus analyses on gene subsets rather
a global transcriptome. Here we have implemented
an a-priori, pathway-based panel selection, and
obtained results relevant to our molecular and cel-
lular pathways of interest. Such dimensionality

reduction methods for transcriptome data have
proved critical for identifying functional results.44

An expansion for this study should include addi-
tional functional cellular tests, for example, protein
quantification, cellular proliferation and cell cycle

Figure 5. Pathway score and GSA results for Dexamethasone vs. Controls Timecourse. (a),(c). Expression of genes associated with
RHO GTPases Activate ROCKs ReactomeDB pathway show activity associated with DEX treatment. (b),(d) Expression of genes
associated with Apoptotic cleavage of cellular proteins pathway shows activity associated with timecourse, but not with DEX
treatments.
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analysis, immunofluorescent imaging of actomyo-
sin and tight-junction protein complexes, and
application of higher-throughput data collection
methods. Utilization of the cell culture also increas-
ingly includes advanced culture apparatus,45 co-

culture systems, organoids, and tissue engineering
systems.46 Each of these may have some unique and
some general characteristics compared with in vivo
tissues, that enhances or limits translational-clinical
value of specific findings.

Figure 5. (Continued).
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